Code
make_table_freq1(demo_group) |>
plot_bar() +
theme_mpxnyc_bar() +
scale_axis_mpxnyc() +
scale_fill_mpxnyc(name = "Race / gender") +
theme_mpxnyc_nomargin()
make_table_freq1(demo_group) |>
plot_bar() +
theme_mpxnyc_bar() +
scale_axis_mpxnyc() +
scale_fill_mpxnyc(name = "Race / gender") +
theme_mpxnyc_nomargin()
make_table_freq1(demo_group) |>
draw_table_1("Race-Gender")| Race-Gender | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Another demographic | 26 | 2% (1-3) |
| Black cisgender man | 131 | 10% (8-12) |
| Cisgender woman | 62 | 5% (4-6) |
| Latinx cisgender man | 198 | 15% (13-17) |
| Non binary | 96 | 7% (6-9) |
| Other cisgender man | 176 | 13% (12-15) |
| Transgender man | 34 | 3% (2-3) |
| Transgender woman | 29 | 2% (1-3) |
| White cisgender man | 552 | 42% (40-45) |
make_table_freq1(age) |>
plot_bar() +
theme_mpxnyc_bar() +
scale_axis_mpxnyc() +
scale_fill_mpxnyc(name = "Age group") +
theme_mpxnyc_nomargin()
make_table_freq1(age) |>
draw_table_1("Age")| Age | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| 18-24 | 195 | 15% (13-17) |
| 25-34 | 538 | 41% (39-44) |
| 35-44 | 325 | 25% (23-27) |
| 45-54 | 145 | 11% (9-13) |
| 55+ | 101 | 8% (6-9) |
make_table_freq1(channel) |>
plot_bar() +
theme_mpxnyc_bar() +
scale_axis_mpxnyc() +
scale_fill_mpxnyc(name = "Recruitment\nchannel") +
theme_mpxnyc_nomargin()
make_table_freq1(channel) |>
draw_table_1("Channel")| Channel | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Grindr | 706 | 54% (51-57) |
| 112 | 9% (7-10) | |
| Partner toolkit | 142 | 11% (9-13) |
| 62 | 5% (4-6) | |
| Unknown | 282 | 22% (19-24) |
make_table_freq1(genderId) |>
plot_bar() +
theme_mpxnyc_bar() +
scale_axis_mpxnyc("MPX NYC sample proportion") +
scale_fill_mpxnyc(name = "Gender\nmodality") +
theme_mpxnyc_nomargin()
make_table_freq1(genderId) |>
draw_table_1("Gender")| Gender | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Another Demographic | 26 | 2% (1-3) |
| Cisgender Man | 1057 | 81% (79-83) |
| Cisgender Woman | 62 | 5% (4-6) |
| Non Binary | 96 | 7% (6-9) |
| Transgender Man | 34 | 3% (2-3) |
| Transgender Woman | 29 | 2% (1-3) |
make_table_freq1(sexOrientation) |>
plot_bar() +
theme_mpxnyc_bar() +
scale_axis_mpxnyc() +
scale_fill_mpxnyc(name = "Sexual\norientation") +
theme_mpxnyc_nomargin()
make_table_freq1(sexOrientation) |>
draw_table_1("Sexual Orientation")| Sexual Orientation | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Bisexual | 186 | 14% (12-16) |
| Gay | 860 | 66% (63-68) |
| Queer | 159 | 12% (10-14) |
| Something Else | 35 | 3% (2-4) |
| Straight | 64 | 5% (4-6) |
make_table_freq1(groupSex) |>
plot_bar() +
theme_mpxnyc_bar() +
scale_axis_mpxnyc() +
scale_fill_mpxnyc(name = "Group contact") +
theme_mpxnyc_nomargin()
make_table_freq1(groupSex) |>
draw_table_1("Group Sex / Contact past 4 weeks") | Group Sex / Contact past 4 weeks | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| No | 774 | 59% (57-62) |
| Yes | 530 | 41% (38-43) |
make_table_freq1(race) |>
plot_bar() +
theme_mpxnyc_bar() +
scale_axis_mpxnyc() +
scale_fill_mpxnyc(name = "Race") +
theme_mpxnyc_nomargin()
make_table_freq1(race) |>
draw_table_1("Race")| Race | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Another Group | 57 | 4% (3-5) |
| Asian | 84 | 6% (5-8) |
| Black | 156 | 12% (10-14) |
| Latinx | 231 | 18% (16-20) |
| Multi Racial | 79 | 6% (5-7) |
| White | 695 | 53% (51-56) |
make_table_freq2(sexOrientation, demo_group) |>
plot_radar_grid() +
scale_radial_mpxnyc() +
scale_fill_mpxnyc(name = "") +
theme_mpxnyc_radar_people() +
theme_mpxnyc_nomargin()
make_table_freq2(sexOrientation, demo_group) |>
draw_table_2("Sexual Orientation by Race-Gender") | Sexual Orientation by Race-Gender | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Another demographic | ||
| Bisexual | 3 | 12% (3-26) |
| Gay | 5 | 19% (5-35) |
| Queer | 11 | 42% (24-62) |
| Something Else | 6 | 23% (7-39) |
| Straight | 1 | 4% (3-15) |
| Black cisgender man | ||
| Bisexual | 24 | 18% (12-25) |
| Gay | 88 | 67% (59-76) |
| Queer | 9 | 7% (3-11) |
| Something Else | 4 | 3% (1-6) |
| Straight | 6 | 5% (1-9) |
| Cisgender woman | ||
| Bisexual | 19 | 31% (20-42) |
| Gay | 4 | 6% (2-13) |
| Queer | 16 | 26% (15-37) |
| Straight | 23 | 37% (25-49) |
| Latinx cisgender man | ||
| Bisexual | 24 | 12% (8-17) |
| Gay | 158 | 80% (74-86) |
| Queer | 9 | 5% (2-8) |
| Something Else | 2 | 1% (0-3) |
| Straight | 5 | 3% (1-5) |
| Non binary | ||
| Bisexual | 18 | 19% (12-26) |
| Gay | 24 | 25% (17-34) |
| Queer | 53 | 55% (45-65) |
| Something Else | 1 | 1% (1-4) |
| Other cisgender man | ||
| Bisexual | 24 | 14% (9-19) |
| Gay | 136 | 77% (71-83) |
| Queer | 10 | 6% (2-9) |
| Straight | 6 | 3% (1-6) |
| Transgender man | ||
| Bisexual | 10 | 29% (13-46) |
| Gay | 7 | 21% (9-35) |
| Queer | 14 | 41% (24-59) |
| Something Else | 1 | 3% (2-11) |
| Straight | 2 | 6% (2-15) |
| Transgender woman | ||
| Bisexual | 7 | 24% (11-39) |
| Gay | 3 | 10% (3-24) |
| Queer | 4 | 14% (4-29) |
| Something Else | 6 | 21% (7-37) |
| Straight | 9 | 31% (15-50) |
| White cisgender man | ||
| Bisexual | 57 | 10% (8-13) |
| Gay | 435 | 79% (75-82) |
| Queer | 33 | 6% (4-8) |
| Something Else | 15 | 3% (1-4) |
| Straight | 12 | 2% (1-3) |
make_table_freq2(hivPrep, demo_group) |>
plot_radar_grid() +
scale_radial_mpxnyc() +
scale_fill_mpxnyc(name = "") +
theme_mpxnyc_radar_people() +
theme_mpxnyc_nomargin()
make_table_freq2(hivPrep, demo_group) |>
draw_table_2("HIV and PrEP Status by Race-Gender") | HIV and PrEP Status by Race-Gender | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Another demographic | ||
| No | 11 | 48% (23-61) |
| Yes | 12 | 52% (26-65) |
| Black cisgender man | ||
| No | 56 | 62% (34-51) |
| Yes | 34 | 38% (19-33) |
| Cisgender woman | ||
| No | 61 | 100% (94-100) |
| Latinx cisgender man | ||
| No | 95 | 56% (41-55) |
| Yes | 74 | 44% (31-44) |
| Non binary | ||
| No | 62 | 68% (55-73) |
| Yes | 29 | 32% (22-40) |
| Other cisgender man | ||
| No | 92 | 56% (45-60) |
| Yes | 73 | 44% (34-49) |
| Transgender man | ||
| No | 23 | 68% (50-82) |
| Yes | 11 | 32% (18-50) |
| Transgender woman | ||
| No | 16 | 64% (37-72) |
| Yes | 9 | 36% (14-49) |
| White cisgender man | ||
| No | 242 | 48% (39-48) |
| Yes | 263 | 52% (44-52) |
make_table_freq2(monkeypoxVaccine, demo_group) |>
plot_radar_grid() +
scale_radial_mpxnyc() +
scale_fill_mpxnyc(name = "") +
theme_mpxnyc_radar_people() +
theme_mpxnyc_nomargin()
make_table_freq2(monkeypoxVaccine, demo_group) |>
draw_table_2( "Mpox Vax Status by Race-Gender") | Mpox Vax Status by Race-Gender | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Another demographic | ||
| No | 8 | 31% (14-48) |
| Unsure | 1 | 4% (3-15) |
| Yes | 17 | 65% (48-83) |
| Black cisgender man | ||
| No | 50 | 38% (29-46) |
| Yes | 81 | 62% (54-71) |
| Cisgender woman | ||
| No | 51 | 82% (73-91) |
| Unsure | 1 | 2% (1-6) |
| Yes | 10 | 16% (7-25) |
| Latinx cisgender man | ||
| No | 77 | 39% (32-46) |
| Yes | 121 | 61% (54-68) |
| Non binary | ||
| No | 32 | 33% (24-43) |
| Unsure | 1 | 1% (1-4) |
| Yes | 63 | 66% (56-75) |
| Other cisgender man | ||
| No | 51 | 29% (22-36) |
| Unsure | 2 | 1% (1-3) |
| Yes | 123 | 70% (63-77) |
| Transgender man | ||
| No | 10 | 29% (15-46) |
| Yes | 24 | 71% (54-85) |
| Transgender woman | ||
| No | 17 | 59% (41-77) |
| Unsure | 1 | 3% (3-12) |
| Yes | 11 | 38% (20-56) |
| White cisgender man | ||
| No | 131 | 24% (20-27) |
| Unsure | 1 | 0% (0-1) |
| Yes | 420 | 76% (73-80) |
make_table_freq2(placeType, placeSex, person_analysis = FALSE) |>
plot_radar_stratified() +
scale_radial_mpxnyc() +
scale_fill_mpxnyc(name = "") +
theme_mpxnyc_radar_places() +
theme_mpxnyc_nomargin()
make_table_freq2(placeType, placeSex, person_analysis = FALSE) |>
draw_table_2("Venue type vs. sexual contact")| Venue type vs. sexual contact | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Did not have sex | ||
| Concert/Theatre/Show | 63 | 24% (18-29) |
| Dance Party | 110 | 42% (35-48) |
| Dark Room/Sex Party | 10 | 4% (2-6) |
| Private Residence | 28 | 11% (7-14) |
| Something Else | 40 | 15% (11-20) |
| Sport Game | 13 | 5% (2-8) |
| Had sex | ||
| Concert/Theatre/Show | 4 | 1% (0-2) |
| Dance Party | 33 | 9% (6-13) |
| Dark Room/Sex Party | 52 | 15% (11-19) |
| Private Residence | 222 | 63% (57-68) |
| Something Else | 40 | 11% (8-15) |
| Sport Game | 1 | 0% (0-1) |
make_table_freq2(placeType, distanceFromHome, person_analysis = FALSE) |>
plot_radar_stratified() +
scale_fill_mpxnyc(name = "") +
scale_radial_mpxnyc() +
theme_mpxnyc_radar_places() +
theme_mpxnyc_nomargin()
make_table_freq2(placeType, distanceFromHome, person_analysis = FALSE) |>
draw_table_2("Venue type vs. distance from home")| Venue type vs. distance from home | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Different Borough | ||
| Concert/Theatre/Show | 26 | 13% (8-18) |
| Dance Party | 64 | 32% (25-38) |
| Dark Room/Sex Party | 29 | 14% (10-20) |
| Private Residence | 47 | 23% (17-31) |
| Something Else | 25 | 12% (7-18) |
| Sport Game | 9 | 4% (2-7) |
| Same Borough | ||
| Concert/Theatre/Show | 36 | 16% (11-21) |
| Dance Party | 56 | 24% (19-30) |
| Dark Room/Sex Party | 22 | 10% (6-13) |
| Private Residence | 73 | 32% (25-38) |
| Something Else | 39 | 17% (12-22) |
| Sport Game | 4 | 2% (0-4) |
| Same Community District | ||
| Concert/Theatre/Show | 5 | 3% (1-5) |
| Dance Party | 23 | 12% (8-18) |
| Dark Room/Sex Party | 11 | 6% (3-10) |
| Private Residence | 130 | 70% (63-77) |
| Something Else | 16 | 9% (5-13) |
| Sport Game | 1 | 1% (0-2) |
make_table_freq3( placeType, distanceFromHome, placeSex, person_analysis = FALSE) |>
plot_radar_stratified2() +
scale_fill_mpxnyc(name = "") +
scale_radial_mpxnyc() +
theme_mpxnyc_radar_places() +
theme_mpxnyc_nomargin()
make_table_freq3( placeType, distanceFromHome, placeSex, person_analysis = FALSE) |>
draw_table_3("Venue type by home distance and sexual contact")| Venue type by home distance and sexual contact | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| N | % (CI) | |
| Different Borough - Did not have sex | ||
| Concert/Theatre/Show | 23 | 22% (14-30) |
| Dance Party | 50 | 47% (37-56) |
| Dark Room/Sex Party | 4 | 4% (1-8) |
| Private Residence | 8 | 8% (3-14) |
| Something Else | 13 | 12% (6-19) |
| Sport Game | 8 | 8% (3-13) |
| Different Borough - Had sex | ||
| Concert/Theatre/Show | 3 | 3% (1-7) |
| Dance Party | 14 | 15% (8-22) |
| Dark Room/Sex Party | 25 | 27% (18-36) |
| Private Residence | 39 | 41% (30-53) |
| Something Else | 12 | 13% (6-21) |
| Sport Game | 1 | 1% (1-4) |
| Same Borough - Did not have sex | ||
| Concert/Theatre/Show | 35 | 30% (21-40) |
| Dance Party | 43 | 37% (29-47) |
| Dark Room/Sex Party | 3 | 3% (1-6) |
| Private Residence | 10 | 9% (4-14) |
| Something Else | 21 | 18% (11-26) |
| Sport Game | 4 | 3% (1-7) |
| Same Borough - Had sex | ||
| Concert/Theatre/Show | 1 | 1% (1-3) |
| Dance Party | 13 | 11% (6-17) |
| Dark Room/Sex Party | 19 | 17% (10-24) |
| Private Residence | 63 | 55% (46-65) |
| Something Else | 18 | 16% (10-22) |
| Same Community District - Did not have sex | ||
| Concert/Theatre/Show | 5 | 12% (3-23) |
| Dance Party | 17 | 40% (25-56) |
| Dark Room/Sex Party | 3 | 7% (2-16) |
| Private Residence | 10 | 24% (11-39) |
| Something Else | 6 | 14% (5-25) |
| Sport Game | 1 | 2% (2-9) |
| Same Community District - Had sex | ||
| Dance Party | 6 | 4% (1-8) |
| Dark Room/Sex Party | 8 | 6% (2-10) |
| Private Residence | 120 | 83% (77-89) |
| Something Else | 10 | 7% (3-11) |
make_table_mixing_2(age) |>
draw_table_matrix_mixing("Age") | Age | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| Ego group | Alter group | Coef (CI) |
| 18-24 | 18-24 | 36% (17 to 57) |
| 18-24 | 25-34 | -3% (-10 to 4) |
| 18-24 | 35-44 | -4% (-13 to 5) |
| 18-24 | 45-54 | -11% (-23 to 1) |
| 18-24 | 55+ | -26% (-38 to -12) |
| 25-34 | 18-24 | -1% (-10 to 9) |
| 25-34 | 25-34 | 11% (6 to 15) |
| 25-34 | 35-44 | -3% (-8 to 3) |
| 25-34 | 45-54 | -13% (-20 to -5) |
| 25-34 | 55+ | -28% (-37 to -19) |
| 35-44 | 18-24 | -2% (-12 to 8) |
| 35-44 | 25-34 | 0% (-5 to 4) |
| 35-44 | 35-44 | 13% (5 to 21) |
| 35-44 | 45-54 | -11% (-20 to -2) |
| 35-44 | 55+ | -18% (-30 to -6) |
| 45-54 | 18-24 | 1% (-13 to 15) |
| 45-54 | 25-34 | -3% (-10 to 4) |
| 45-54 | 35-44 | -3% (-12 to 6) |
| 45-54 | 45-54 | 23% (6 to 47) |
| 45-54 | 55+ | -10% (-27 to 8) |
| 55+ | 18-24 | -3% (-19 to 14) |
| 55+ | 25-34 | -9% (-18 to 0) |
| 55+ | 35-44 | -4% (-16 to 8) |
| 55+ | 45-54 | 0% (-18 to 19) |
| 55+ | 55+ | 65% (28 to 118) |
make_plotdata_racegender_mixing_matrix() |>
plot_matrix_mixing() +
scale_fill_mpxnyc_gradient() +
scale_color_mpxnyc_gradient() +
theme_mpxnyc_mixing()
make_table_mixing_2(demo_group) |>
draw_table_matrix_mixing("Race-gender") | Race-gender | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| Ego group | Alter group | Coef (CI) |
| White cisgender man | White cisgender man | 12% (7 to 17) |
| White cisgender man | Latinx cisgender man | -11% (-19 to -1) |
| White cisgender man | Black cisgender man | -22% (-33 to -11) |
| White cisgender man | Transgender man | 4% (-19 to 28) |
| White cisgender man | Transgender woman | -15% (-37 to 8) |
| White cisgender man | Non binary | -5% (-19 to 11) |
| White cisgender man | Cisgender woman | -10% (-23 to 3) |
| White cisgender man | Other cisgender man | -5% (-15 to 4) |
| White cisgender man | Another demographic | 26% (-16 to 81) |
| Latinx cisgender man | White cisgender man | -16% (-23 to -9) |
| Latinx cisgender man | Latinx cisgender man | 45% (25 to 69) |
| Latinx cisgender man | Black cisgender man | 8% (-11 to 28) |
| Latinx cisgender man | Transgender man | 20% (-19 to 57) |
| Latinx cisgender man | Transgender woman | -20% (-44 to 8) |
| Latinx cisgender man | Non binary | -6% (-23 to 14) |
| Latinx cisgender man | Cisgender woman | -18% (-38 to 4) |
| Latinx cisgender man | Other cisgender man | -2% (-16 to 12) |
| Latinx cisgender man | Another demographic | 30% (-21 to 93) |
| Black cisgender man | White cisgender man | -24% (-33 to -16) |
| Black cisgender man | Latinx cisgender man | 10% (-7 to 30) |
| Black cisgender man | Black cisgender man | 99% (57 to 149) |
| Black cisgender man | Transgender man | -27% (-55 to 5) |
| Black cisgender man | Transgender woman | 0% (-37 to 48) |
| Black cisgender man | Non binary | -11% (-33 to 12) |
| Black cisgender man | Cisgender woman | 5% (-26 to 39) |
| Black cisgender man | Other cisgender man | -5% (-20 to 13) |
| Black cisgender man | Another demographic | 38% (-26 to 119) |
| Transgender man | White cisgender man | -11% (-28 to 5) |
| Transgender man | Latinx cisgender man | 7% (-24 to 43) |
| Transgender man | Black cisgender man | -17% (-54 to 25) |
| Transgender man | Transgender man | 185% (20 to 477) |
| Transgender man | Transgender woman | -4% (-59 to 76) |
| Transgender man | Non binary | 56% (-1 to 124) |
| Transgender man | Cisgender woman | -34% (-65 to 8) |
| Transgender man | Other cisgender man | -15% (-40 to 13) |
| Transgender man | Another demographic | 12% (-50 to 98) |
| Transgender woman | White cisgender man | -10% (-27 to 5) |
| Transgender woman | Latinx cisgender man | -8% (-33 to 20) |
| Transgender woman | Black cisgender man | 13% (-31 to 67) |
| Transgender woman | Transgender man | -4% (-59 to 71) |
| Transgender woman | Transgender woman | 117% (2 to 322) |
| Transgender woman | Non binary | 18% (-28 to 68) |
| Transgender woman | Cisgender woman | -6% (-51 to 56) |
| Transgender woman | Other cisgender man | -5% (-31 to 25) |
| Transgender woman | Another demographic | 62% (-32 to 205) |
| Non binary | White cisgender man | -9% (-18 to 0) |
| Non binary | Latinx cisgender man | -11% (-27 to 5) |
| Non binary | Black cisgender man | -19% (-38 to 1) |
| Non binary | Transgender man | 50% (-1 to 108) |
| Non binary | Transgender woman | 6% (-35 to 53) |
| Non binary | Non binary | 77% (39 to 125) |
| Non binary | Cisgender woman | -10% (-37 to 24) |
| Non binary | Other cisgender man | 3% (-16 to 23) |
| Non binary | Another demographic | 27% (-25 to 92) |
| Cisgender woman | White cisgender man | -3% (-15 to 8) |
| Cisgender woman | Latinx cisgender man | -5% (-26 to 19) |
| Cisgender woman | Black cisgender man | 1% (-28 to 31) |
| Cisgender woman | Transgender man | -15% (-54 to 40) |
| Cisgender woman | Transgender woman | -18% (-56 to 32) |
| Cisgender woman | Non binary | -3% (-29 to 28) |
| Cisgender woman | Cisgender woman | 89% (34 to 164) |
| Cisgender woman | Other cisgender man | -16% (-33 to 4) |
| Cisgender woman | Another demographic | 48% (-35 to 150) |
| Other cisgender man | White cisgender man | -6% (-13 to 0) |
| Other cisgender man | Latinx cisgender man | -4% (-17 to 8) |
| Other cisgender man | Black cisgender man | -3% (-19 to 14) |
| Other cisgender man | Transgender man | -2% (-34 to 34) |
| Other cisgender man | Transgender woman | -19% (-40 to 5) |
| Other cisgender man | Non binary | 2% (-16 to 23) |
| Other cisgender man | Cisgender woman | -16% (-35 to 5) |
| Other cisgender man | Other cisgender man | 30% (13 to 52) |
| Other cisgender man | Another demographic | 27% (-12 to 73) |
| Another demographic | White cisgender man | -3% (-21 to 12) |
| Another demographic | Latinx cisgender man | -6% (-32 to 24) |
| Another demographic | Black cisgender man | 2% (-37 to 55) |
| Another demographic | Transgender man | -1% (-60 to 88) |
| Another demographic | Transgender woman | -21% (-62 to 31) |
| Another demographic | Non binary | -9% (-39 to 27) |
| Another demographic | Cisgender woman | -13% (-56 to 55) |
| Another demographic | Other cisgender man | 2% (-24 to 34) |
| Another demographic | Another demographic | 174% (-8 to 648) |
make_table_mixing_2(sexOrientation) |>
draw_table_matrix_mixing("Sexual orientation") | Sexual orientation | ||
|---|---|---|
| (MPX NYC, 2022) | ||
| Ego group | Alter group | Coef (CI) |
| Gay | Gay | 3% (0 to 5) |
| Gay | Bisexual | -7% (-14 to 0) |
| Gay | Straight | -16% (-31 to 2) |
| Gay | Queer | 3% (-5 to 12) |
| Gay | Something Else | -15% (-31 to 0) |
| Bisexual | Gay | -5% (-9 to -1) |
| Bisexual | Bisexual | 25% (9 to 44) |
| Bisexual | Straight | 0% (-29 to 34) |
| Bisexual | Queer | 0% (-13 to 14) |
| Bisexual | Something Else | -14% (-41 to 15) |
| Straight | Gay | -6% (-14 to 1) |
| Straight | Bisexual | 2% (-20 to 26) |
| Straight | Straight | 103% (19 to 223) |
| Straight | Queer | -9% (-33 to 16) |
| Straight | Something Else | -4% (-56 to 75) |
| Queer | Gay | -3% (-7 to 1) |
| Queer | Bisexual | -8% (-21 to 4) |
| Queer | Straight | -22% (-44 to 3) |
| Queer | Queer | 42% (25 to 61) |
| Queer | Something Else | -30% (-55 to -1) |
| Something Else | Gay | -8% (-20 to 4) |
| Something Else | Bisexual | 2% (-30 to 35) |
| Something Else | Straight | -5% (-52 to 62) |
| Something Else | Queer | -11% (-43 to 26) |
| Something Else | Something Else | 245% (16 to 625) |